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Abstract Let U/ denote the class of normalized analytic functions f in the open unit
disk D satisfying

2
Z
[ ! —1 1.
(f(z)) F@-1 =

The U-radius is obtained for several classes of functions. These include the class
of normalized analytic functions f satisfying the inequality Re f(z)/g(z) > 0 or
|f(z)/g(z) — 1] < 1in D, where g belongs to a certain class of functions, the class of
functions f satisfying | f'(z) — 1| < 1 in D, and functions f satisfying Re f(z)/z >
a,0 < o < 1, in D. A recent conjecture by Obradovi¢ and Ponnusamy concerning
the radius of univalence for a product involving univalent functions is also shown to
hold true.
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1 Introduction

Let A denote the class of analytic functions f inID = {z € C : |z| < 1} normalized by
f(0) =0 = f/(0) — 1. Let S be its subclass consisting of univalent functions. Denote
by S&* and C the subclasses of S consisting, respectively, of starlike (with respect
to the origin) and convex functions. Geometrically f € S&* if the linear segment
tw,0 <t <1, lies completely in f (D) whenever w € f(D), while f € C if f(ID)
is a convex domain. These functions are, respectively, characterized analytically by
Re (z2f'(2)/f(2)) > 0and Re (1 +zf"(2)/f(2)) > O.

For 0 < o < 1, let P(x) denote the class of analytic functions p satisfying
p(0) = 1 and Re p(z) > a in D, with P := P(0). Thus f € S* is equivalent to
2f'(2)/f(z) € P. Likewise, f € Cif 1 +zf"(z)/f'(z) € P.

Let U denote the subclass consisting of functions f € A satisfying [U/f(z)] < 1
for z € D, where

2
Up(z) = (i) @) -1

f@)
Asearly as 1958, Aksent’ev [1] showed that functions in/ are univalent in D. However
the converse need not hold, as illustrated by the convex function f(z) = —log(l —z).

Evidently |u £(2) | > 1 forreal z close to 1. Though functions in &/ need not be starlike
[5,17], the Koebe function k(z) = z/(1 — z)? is an important example of a function
in U N S*. Indeed each function in the set

S, — z Z Z Z Z
P71 02?2 T4z 1+£22 12z+22

belongs to . Interestingly, functions in Sz, are known [6] to be the only functions in
S with integer coefficients in their series expansions. Thus Sz c U N S* C S.

Functions f € U have a close connection with the class X consisting of univalent
meromorphic functions F in A := {; el > 1} U {oo} with F(¢) # 0 and of the
form

F@Q)=¢+D et ™ €A,
n=0

Indeed the correspondence is given by

F(g) = § €A,

1
razey’

and the change of variable { = 1/z readily yields

F' (@)= 1= f'1/0)/(*f21/0) — 1 =Us(2).

The class U/ has been widely studied in recent years, for example in the works
of [14-22] and [25]. Several interesting properties of the class U/ are shaped by the
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The U-Radius for Classes of Analytic Functions 1707

coefficients of its mappings. If f € S, then z/f(z) is nonvanishing in D and has a
series representation of the form

<

B I 1.1
e +nZ:; z (1.1

It follows from the area theorem [7, Theorem 11, p. 193] that

o0

D= Dbal* < 1. (12)

n=2

Obradovi¢ and Ponnusamy [19] showed that every f € A of the form (1.1) belongs
to the class &/ whenever Z;’lozz(n — D|b,| < 1. They [20] also showed that f(z) =
2+ Yol an7" € A satisfying > 02, nla,| < 1 belongs to & N S*. On the other
hand, it was shown in [2] that functions f € U of the form (1.1) necessarily satisfy
Sonia(n = 1)2by* < 1.

In [2], Ali et al. showed that the condition (1.2) does not ensure univalence, and they
obtained the sharp radius of univalence rq = 1/+/2 for the class of functions f € A
satisfying (1.2). In [16], the I-radius for S was determined to be 1/+/2. Evidently,
radius problems have continued to be an important area of study.

In general, for two families G and F of A, the G-radius for the class F, denoted by
Rg(F), is the largest number R such that r_lf(rz) eGforO<r <R,and f € F.

In [12,13], MacGregor obtained the radius of starlikeness for the class of functions
f € Asatisfying either

Re(@)w zeD) or &_1‘<1 (z e D) (1.3)
g(2) g(2)

for some g € C. Ratti [27] determined its radius of starlikeness for the class (1.3)
when g belongs to certain classes of analytic functions. MacGregor in [11] also found
the radius of convexity for univalent functions satisfying | f'(z) — 1| < 1.

This paper finds the U/-radius for three classes of functions:

(a) firstis the class of functions f € A satisfying the inequality
Re (&) >0, zeD, 1.4)
8(2)

for some g € A with

Re(@) >0, zeD;

z
(b) secondly the class of functions f € A satisfying the inequality

Re (&) >0, zeD, (1.5)
g(2)
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1708 R. M. Ali, N. M. Alarifi

for some g € A with

1
Re(@)>—, z €Dy
z 2

(c) and the class of functions f € A satisfying the inequality

&—1‘<1, z €D,

g(2)

for some g € A with

Re(@) >0, zeD.

Z

Additionally, this paper also finds the radius r( so that

2
z b
}Uf(Z)| = ‘(m) fl@)—1| <1

in the disk |z| < rg for the following two classes of functions:

(a) the subclass of close-to-convex functions f € A satisfying
|lff@—1] <1, zeD; (1.6)
(b) and the class of functions f € A satisfying the inequality

Re&>a, O<a<l1, zeD. (1.7)

Z

It is known that every convex function in C belongs to the class (1.7) for @ = 1/2.
Indeed, this class also contains f € U satisfying f”(0) = 0.

Ratti [27] showed that the radius of starlikeness for the class (1.4) is V5 -2,
and that the radius can be improved to 1/3 for the class given by (1.5). The radius
of convexity for the class given by (1.6) was obtained by MacGregor [11]. Several
radius constants, which include the radius of starlikeness of a positive order, radius
of parabolic starlikeness, radius of Bernoulli lemniscate starlikeness, and radius of
uniform convexity, have been obtained for the classes (1.4) and (1.5) by Ali et al. in
[3].

Obradovi¢ and Ponnusamy in [21] also considered the product of functions F(z) =
f(2)g(z)/z when f and g belong to certain subsets of S. They showed that whenever
f,g € S* then the product F is starlike in the disk |z| < 1/3. Additionally, F
belongs to U in the disk |z| < rg, where ro &~ 0.30294, whenever f, g € S. In [22],
they improved the value of ry to ro & 0.3263, where rq is the positive root of a certain
equation. When f, g € S, they [21] conjectured that F is also univalent in the disk
|z| < 1/3, and that the radius 1/3 is best. In Sect. 3, we show in the affirmative this
conjecture. Indeed, the radius of starlikeness for such functions F' is shown to be 1/3.
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The following lemmas are needed in the sequel. Recall that an analytic function f
is subordinate to an analytic function g, written f(z) < g(z), if there exists an analytic

self-map w of D with w(0) = 0 satisfying f(z) = g(w(z)).

Lemma 1.1 [9] Let p(z) = 1 + p1z + - - - be analytic in D, and h be convex. If

1
@)+ ;zp’(z) < h(z),

where y # 0 and Rey > 0, then

Z

p(2) < l/h(t)ﬂ"‘dz.
zV
0

Lemma 1.2 [18] Let f be analytic in D and have the form

2 2
——=1l+tbiz+biz"+--,
@

with by, > 0 for all n > 2. Then the following are equivalent:

(a) fes,
(b) L&D 0, zeD,
(¢) Dmis(n—1b, <1,

(d) fel.

2 The U-Radius for Classes of Analytic Functions

(1.8)

Theorem 2.1 The U-radius for the class of functions f € A satisfying the inequality

Re(&) >0, zeD,
8()

for some g € A with

Re(@) >0, zeD,

Z

isry =~/5 -2~ 0.23607.

Proof Writing p(z) = g(z)/z and h(z) = f(z)/g(2), it follows that p, h € P and

f(2) = zp(2)h(z). A brief computation shows that
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1710 R. M. Ali, N. M. Alarifi

Ur(z) = 12; ((Z)
5Ge:Gs) )56 6s () )
@ \pe \pe @ \h ~ \h@)
1
1).
(P(Z) )(h(z) )
Thus
U] < ’ 'L_ (;)’_IML ’;_ (L)’_l‘
PN =1l ro e @ | @~ \h@
1 1
_ — — 1. 2.1
+‘h(z) Hp(z) ‘ @D

Since 1/p(z) =1+ D02 bpz" and 1/h(z) = 1 4+ > 02, c,2" are in the class P,
then |b,| < 2 and |c,| < 2 forn > 1. Thus for |z]| =,

Zw llzl" <2Z

S

2.2
p(2) 22)

and

Similar estimates are obtained for the function 1/ A.
From (2.1), it follows that

u()<2(1+r 2r2 )-I- 4r? _ 8r?
Ul =2\Ta-) T a-m S a-o

2
Z(n — Dlballzl" < 2Z(n = _)_

(2.3)

Hence |[Uy(z)| < 1if |z] < V5 — 2, where Yy = V/5 = 2 is the root of the equation
r+D@*+4r—1)=0.

To demonstrate sharpness, let fo(z) = z((1 —2)/(1 + z))z, and go(z) = z(1 —
z)/(1 4 z). Evidently

U, ()] = ‘(f( )) fo'(r) =1

Clga+nN ra-=n? 4rd-n |
- ((1—r>2) (<1+r>2_ <1+r>3)_
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C|a+nPa = —4rd+r)

(1-7r)3 !

_ 8r2
(=3

Since r2/(1 — r)? is increasing, it follows that U, ()| > 1 for/5—2 <r < 1. O
Theorem 2.2 The U-radius for the class of functions f € A satisfying the inequality
Re(&) >0, zeD,

8(2)

for some g € A with

1
Re(@) >—, zeD,
Z 2

isry = 1/3.

Proof Let p(z) = g(2)/z,h(z) = f(2)/g(z), and f(z) = zp(z)h(z). Since p €
P(1/2), it follows that p(z) < 1/(1 + z), and thus p(z) = 1/(1 + z¢(z)), where
lp(z)] < 1.For |z|] =r, and |¢(z)| = x,0 < x < 1, evidently

7@ 1' = |zllp@)| =rx,

and the Schwarz—Pick inequality [4, p. 198] gives

U (Y ]2 oy < 2P0 = le@P) 20—
\m Z(m) 1\—'2"“@'5 R

The function & € P satisfies the estimates (2.2) and (2.3). It follows from (2.1) that

U @) < 1+r r2(1 —x2) 2r2(1 + rx) 2r2x _ r2(3 +2x —xz)
A e A-rn2 "1—r_  (d-r2

Since A(x) =3 +2x — xZis increasing over 0 < x < 1, evidently

4r?
u < ——7<1
U@l = 7 <
if r < ryy, where ry; = 1/3 is the root of the equation 3r% + 2r — 1 = 0.
For sharpness, consider fy(z) = z(1 —z)/(1 + 2)?, and go(z) = z/(1 + z). Thus

z 1+ z)?
fom)  1-z

oo
=1 +3z+42z".
n=2
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1712 R. M. Ali, N. M. Alarifi

It follows from Lemma 1.2 that ! fo(rz) € U provided 0 < r < 1 satisfies

2r \?
<1,
—r -

that is, if r < r7, where r;y = 1/3 is the root of the equation 3r> +2r — 1 =0. O

o0 o0
4 —Dr'*t=4 =
;(n ) rrgnr (1

Theorem 2.3 The U-radius for the class of functions f € A satisfying the inequality

&—1‘ 1, zeD,

8()
for some g € A with
Re(ﬁ) >0, zeD,
z
isry = (V17 — 3) /4 ~ 0.28078.

Proof Let p(z) = g(2)/z, h(z) = f(2)/g(z), and f(z) = zp(2)h(z). Then 1/ h(z) =
1+ >0 ¢,z" isin P(1/2), and thus |¢,| < 1 forn > 1. For |z| =r,

o]

% - 1‘ Z|cn||z| =D "=

and

1
'm (h(z)) ‘ Z(”—l)lcnIIZI <Z(n—1)r z_)

Further the function p satisfies the estimates (2.2) and (2.3). It follows from (2.1)
that

272 14+r r? r 2r 5r2 — p3
5 T 7 + = 7
r({l—r) 1—r({1—r) 1—rl-—r (1 —r)-

1
Ur )| < =

Hence [Uf(z)| < Lif r < ry, where ryy = (\/ 17 — 3)/4 is the root of the equation
2r24+3r —1=0.

To demonstrate sharpness, let fo(z) = z(1—z)%/(1+4z), and go(z) = z(1—2)/(1+
z). Thus

z 1+z
fom)  (1—2)?

oo
=1+ @n+ 2"

n=1
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Lemma 1.2 will be used to show r_lfo(rz) eU.ForO<r <1,

rz

Sfo(rz)

o

=1+ Z(Zn + Dr'*",
n=1

and

o0 o0 o0
Dn—=D@n+ D" =27 4+ 2+ Dr' 42D (n+ Dr”
n=2 n=0 n=0

4r? r? 5r2 — 3
= A= a=rp =

if and only if r < (v/17 — 3) /4, where rjy = (/17 — 3) /4 is the root of the equation
2r24+3r—1=0. m

Theorem 2.4 Let f € A satisfy
If' (@) =1 <1,zeD.

Then

2
z b
}Uf(z)| = ‘(m) flm)—1 <1

in the disk |z| < ro, where ro = / 5 — 1)/2 ~ 0.78615.

Proof Evidently the subordination (1.8) translates to f'(z) < 1 + z by choosing
y =1, p(2) = f(z)/z,and h(z) = 1 + z. It follows that

f (@) z

Thus there exists an analytic self-map w of D with w(0) = Oand f(z)/z = 1+w(z)/2.
Simple computations lead to

2
o 1 w | w'@Y
[Ur ()| = (]+#) (1+ >t ) 1

2 (2w () — w(2) — wi(2)]
= 5 :

@
4(1+“’TZ

Thus

2 |zw'(2) — w@)| + (W)

[Ur(2)| < 5
4 (1 _ |w§z>\)

(2.4)
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1714 R. M. Ali, N. M. Alarifi

The Schwarz—Pick inequality [4, p. 198] applied to w(z)/z yields

|z = lw(z)|?

2.
T~ 2p 2.5

lzw'(z) — w(z)| <

Substituting (2.5) into (2.4), and writing |w(z)| =1t, |z| =r, 0 <t < r,leads to

‘ 1 —(l—l—rz)t2~|—2r2
Ur @) < (1_r2)( Y

1
= T rZCD(t, r).

Since

dd(t,r)  4(r2—(1+r))
a 2 —1)3 ’

the function @ (¢, r) attains its maximum at the point ty = r2 /(1 + r2), that is,

r2 (r2 + 1)

D(t,r) < (r2 n 2)

Thus |Uy(z)| < 1if |z| < ro, where rg = (\/5 — 1)/2 is the root of the equation
P2 —1=0. O

Remark 2.1 Ozaki [23]introduced the class G consisting of functions f € A satisfying

D\ 3
ke (1 AT ) )

and proved that these functions are necessarily univalent in ). Umezawa [30]
showed that these functions are convex in one direction. Sakaguchi [28] proved that
|arg f'(z)| < /2 whenever f € G, and indeed, G C S*, see [10,29]. There has been
a continued interest in recent years over the class G, see for example, the works in
[24,26]. Tt follows from [10, Theorem 2] that | f/(z) — 1| < 1 whenever f € G. Thus

Theorem 2.4 shows that |Uf(z)| < 1 for f € G, and |z] < \/(+/5 = 1)/2.

Theorem 2.5 Let | € A satisfy
Re&>a, O<a<l1, zeD.
z

Then

<1

2
Z
U= =) f@-1
U ()] ‘(f(z)) f'@
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in the disk |z| < r(a), where

2(1—a) 1
Ve — b 0<a=

Jo(l—a)—a 1

—2a 10
rla) = \/«/27401(170()72(14) 1
20a—T1) )

I 20—
_m(l— 2a=1 ) w=a<l

and 1y = (8 — 1Y+ 6177+ V71 + 6\/177)/12 ~ 0.93804 is the root of the
equation

4o — ((2a “ 1)+ /o — 1)(10a — 9)) ((2a D+ /2(0 —0)Qa — 1)) =2

(2.6)
in the interval [9/10, 1). The result is sharp for the case o € [0, 1/10].

Proof 1Tt follows that

&<a+(l—a)1+z.
z 1

Thus there exists an analytic self-map w of ID satisfying w(0) = 0 and

_ (1t -20)w(z)
f(z)—z( e )
Now
Us(2) = 2(1 — @) ((Zw’(z) — w(z)) — (12_ 206)w2(z)) |
and
Uy < Xm0 (2@ —wE|+ 11 - 2elw@P)

(1 =11 = 2allw(@)?
Writing |w(z)| =t¢,|z| =r,0 <t <r,and |l — 2| = a, it follows from (2.5) that

21— ) (P + (a1 = r?) — 1) 1)
(1 —at)2(1 —r?)

U ()| <

= @(t,r).
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1716 R. M. Ali, N. M. Alarifi

Evidently
190, _4l-w-(1—al=r))  40-o
o (1 —=r2)(1 —ar)? T U= - m)3¢ 1),
where

o(t,r) = ar? — (1 —a(l — r2)) t.

Thus the critical points of @ (¢, r) over t € [0, r] occurs at t = 0, t = r and possibly
atrg = ar2/(1 — a + ar?), where ¢(tg, r) = 0. Indeed ¢ is a critical point in [0, r]
whenever

g(r) = ar* —ar+1—a 2.7

is nonnegative.
Fora € [0, 4/5], itis evident that g(r) > 0 in (0, 1). Hence the maximum value of
@ (¢, r) is the largest value of {@ (0, r); @ (tg, r); @ (r, r)}. Since

20— —a+ard)? 201 —a)r?
PN =20 = DU rad A=)
2a%(1 — a)r*

T U—ad-Ddtad -

3

and
2(1—a)(l —a+ar’)rr  2(1 —a)ar?
(I—a)d —r2)(1+ar?)  (1—ar)?
22—y (d—a) —ar(1 - 1)’ _
S (I—a)(d=rH(+ar?)(1 —ar)? ~

D(tg,r) — D(r,r) =

)

it is evident that max & (¢, r) = @ (1o, r). Thus

2l —a)(1 —a —i—arz)r2 |
-1 - +ar?)

Ur()| = P(to,7) =
provided |z| < r (&), where r(«) is the root of the equation
a(3—2a—a)r4+(1 —a)(3—2a—a)r2—(l —a) =0.

Hence

\/(1 —a)2(3—2a—a)2+4a(1 —a)(3—2(x—a) - —a)(3—20t—a)
2a(3—2a —a)

rz(a) =

@ Springer



The U/-Radius for Classes of Analytic Functions 1717

Since a = |1 — 2«/|, further simplification leads to

Vo(l—a)—a 1
—2a 10
r(a) =
\/«/2—40{(1—(1)—2(1—(1) 1
2Qa—1) ’ 2

For a € [4/5, 1], the roots of g in (2.7) occurs at

) a+ JaGa—®
n=——o . n=—— (2.8)

Evidently g(r) > 0 over the intervals [0, 1] and [r2, 1), and so the maximum of
@(t, r) occurs at D (fg, ). On the other hand, g(r) < 0 over (rq, r2). Since #y is not a
critical point, the maximum of @ (z, r) occurs at either @ (0, r) or @ (r, r).

Consider

2 2
K(r)=®(0,r) — d(r.r) = 2((11 _‘:z))r = 2211 _Zi‘;zr
2r’(1 — a)(a(l + a)r* —2ar + 1 — a)
- 1= —ar)?
2r2(1 — )

= Ao Dd —ar2

where

k(r)y =a(l4+a)yr* —2ar +1—a, acl[4/51].

The roots of k are

, a—+yal+a@—1) a++ad+a@a-1)

rl = . ré =
a(l +a) a(l +a)

Observe that K (r) < 0 over (], r}), and that (r1,r2) C (r],r}), where ry, ry are
given by (2.8). Thus K (r) < 0 over (71, r2), and the maximum value of @ (t, r) is
D(r,r).

There are two cases to consider for a = |1 — 2«| € [4/5, 1], thatis, o € [0, 1/10]
and @ € [9/10, 1). Consider first when « € [0, 1/10].

If r € [0, r1], then g given by (2.7) satisfies g(r) > 0. Thus

U ()] = P10, 1) < 1

for all |z| < Rj(«), where

Ja(l —o) —«
Rie) =y =% —
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1718 R. M. Ali, N. M. Alarifi

is the root of the equation @ (#g, r) = 1. Since Ry («) > ry, it follows that
Ur(2)] <1

whenever |z| < 7.
When r € (rq, r2), then g(r) < 0 and

Up(2)| < P(r,r) <1
for all |z| < R»>(«), where

200 —a)

-1
1 -2«

Ry(a) =

is the root of the equation @ (r,r) = 1. Since r; < Ra(a) < ro, we deduce that
[Ur(z)| < 1forall z] < Ry(a) when e € [0, 1/10].

Consider next the other case when o € [9/10, 1). Likewise as in the first case, if
r € [0, 1], then g(r) > 0 and

U (@) = P10, r) < 1

forall |z| < R|(«), where

R @ =\/«/2—404(1 —w) —2(1—a) 29,

2Qu — 1)
is the root of the equation @ (7o, r) = 1. Since Ri (@) > rq, then
Ur(2)] <1

whenever |z| < 7.
If r € (r1,rp), then g(r) < 0 and

U ()| = P(r,r) <1

for all |z| < R} («), where

[P Y R T
2@ =S\ YV e

is the root of the equation @ (r, r) = 1.
A closer scrutiny of R/z(oc) reveals that r; < Ré(oz) < rp whenever o € [1y, 1),
where 1, is given by (2.6). Thus in this case, [/ (z)| < 1 for |z| < R} ().
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On the other hand, Ré(oz) > ro whenever o € [9/10, 7,]. Thus if r € [r;, 1), then
g(r) > 0and

U ()] = P10, 7) < 1

for all [z| < R/ (), where R (a) is given by (2.9). Since r» < R} («) < 1, it follows
that [Uy(z)| < 1for|z] < R/1 (o) when @ € [9/10, t4].

For « € [0, 1/10], an extremal function is fy(z) = z(l - (1= 2a)z)/(1 +2).In
this case,

z (1+72)
fom)  1-(1-2a)

=14+2(1—a) > (1 -2)" 7"

n=1
Thus

Rz
fo(Rz)

o0
=1+2(1—-a) 2(1 —2a)" IR

n=1
00
=1+ anz”.
n=1

for 0 < R < 1. Evidently

Z(n — )by =2(1 — a)(1 — 2a) R? Z(n —D((1 - 205)R)"_2

n=2 n=2
_2(1—a)(1 —20)R? _
(1—(1—2a)R)’

if and only if R < R(&), where R(«) = /2(1 — «)/(1 — 2a) — 1 is the root of the
equation

(1—2a)R>+2(1 —2a)R — 1 =0.

It follows from Lemma 1.2 that R_lfo(Rz) eUIfR< .20 —a)/(1 —2a)—1.0O

3 Product of Univalent Functions

Let | and F; be subsets of S. In [21], Obradovi¢ and Ponnusamy considered functions

f(2)g@)

Z

F(z) = e D, 3.1)
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where f € F1 and g € F». If f and g are in U, they showed that F defined by (3.1)
belongs to U/ in the disk |z| < 1/3, and that this radius is sharp. Indeed if f, g € S*,
then the product F is starlike in the disk |z] < 1/3. When f, g € S, they conjectured
that F' is univalent in the disk |z| < 1/3, and that this radius is best. Here we shall
validate the conjecture.

Lemma3.1 If f € S, then

(zf’(z)) 1—r
Re > s
f(@ 1+4r
for|z| =r < tanh(1/2) ~ 0.46212.

Proof Let f € S. It is known [8] that for [z| < r < 1, the region of values of
¢ =log(zf'(z)/f(2)) is the disk

1+r

1—r]°

The function w(z) = e* is univalent in ). Thus if r is chosen so that
log ((l +r)/ - r)) < 1, that is, r < tanh(1/2), then w is univalent in D,.. Evi-
dently the function ¢(z) = w(z) — 1 is convex in D, that is, w is a convex function
with positive coefficients in its series expansion. Thus

Dr=[§|§|§10g

1
4viengr Re w(¢) = 05i0n§f2n Re exp (log (1 i_:) cos 9)
(1 1+r) 1—r
=exp|—|1lo
P gl—r 1+r

for |z] = r < tanh(1/2). O

Theorem 3.1 If f, g € S, then the function F defined by (3.1) is starlike in the disk
|z| < 1/3. The radius 1/3 is sharp.

Proof 1t follows from (3.1) that

F/ / /
Re (z (z)) Re (zf (z)) +Re (zg (Z)) _1
F(2) f @) 8(2)
Lemma 3.1 now shows that F is starlike when |z| < 1/3. Sharpness is demonstrated
by letting f(z) = z/(1 — 2)> = g(2). o
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