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Abstract Let U denote the class of normalized analytic functions f in the open unit
disk D satisfying

∣
∣
∣
∣
∣

(
z

f (z)

)2

f ′(z) − 1

∣
∣
∣
∣
∣
< 1.

The U-radius is obtained for several classes of functions. These include the class
of normalized analytic functions f satisfying the inequality Re f (z)/g(z) > 0 or
| f (z)/g(z) − 1| < 1 inD, where g belongs to a certain class of functions, the class of
functions f satisfying | f ′(z) − 1| < 1 in D, and functions f satisfying Re f (z)/z >

α, 0 ≤ α < 1, in D. A recent conjecture by Obradović and Ponnusamy concerning
the radius of univalence for a product involving univalent functions is also shown to
hold true.
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1706 R. M. Ali, N. M. Alarifi

1 Introduction

LetA denote the class of analytic functions f inD = {z ∈ C : |z| < 1} normalized by
f (0) = 0 = f ′(0)−1. Let S be its subclass consisting of univalent functions. Denote
by S∗ and C the subclasses of S consisting, respectively, of starlike (with respect
to the origin) and convex functions. Geometrically f ∈ S∗ if the linear segment
tw, 0 ≤ t ≤ 1, lies completely in f (D) whenever w ∈ f (D), while f ∈ C if f (D)

is a convex domain. These functions are, respectively, characterized analytically by
Re

(

z f ′(z)/ f (z)
)

> 0 and Re
(

1 + z f ′′(z)/ f ′(z)
)

> 0.
For 0 ≤ α < 1, let P(α) denote the class of analytic functions p satisfying

p(0) = 1 and Re p(z) > α in D, with P := P(0). Thus f ∈ S∗ is equivalent to
z f ′(z)/ f (z) ∈ P. Likewise, f ∈ C if 1 + z f ′′(z)/ f ′(z) ∈ P.

Let U denote the subclass consisting of functions f ∈ A satisfying |U f (z)| < 1
for z ∈ D, where

U f (z) =
(

z

f (z)

)2

f ′(z) − 1.

As early as 1958,Aksent’ev [1] showed that functions inU are univalent inD. However
the converse need not hold, as illustrated by the convex function f (z) = − log(1− z).
Evidently

∣
∣U f (z)

∣
∣ > 1 for real z close to 1. Though functions in U need not be starlike

[5,17], the Koebe function k(z) = z/(1 − z)2 is an important example of a function
in U ∩ S∗. Indeed each function in the set

SZ =
{

z,
z

(1 ± z)2
,

z

1 ± z
,

z

1 ± z2
,

z

1 ± z + z2

}

belongs to U . Interestingly, functions in SZ are known [6] to be the only functions in
S with integer coefficients in their series expansions. Thus SZ ⊂ U ∩ S∗ ⊂ S.

Functions f ∈ U have a close connection with the class � consisting of univalent
meromorphic functions F in � := {

ζ : |ζ | > 1
} ∪ {∞} with F(ζ ) 
= 0 and of the

form

F(ζ ) = ζ +
∞
∑

n=0

cnζ
−n, ζ ∈ �.

Indeed the correspondence is given by

F(ζ ) = 1

f (1/ζ )
, ζ ∈ �,

and the change of variable ζ = 1/z readily yields

F ′(ζ ) − 1 = f ′(1/ζ )/
(

ζ 2 f 2(1/ζ )
) − 1 = U f (z).

The class U has been widely studied in recent years, for example in the works
of [14–22] and [25]. Several interesting properties of the class U are shaped by the

123



The U -Radius for Classes of Analytic Functions 1707

coefficients of its mappings. If f ∈ S, then z/ f (z) is nonvanishing in D and has a
series representation of the form

z

f (z)
= 1 +

∞
∑

n=1

bnz
n . (1.1)

It follows from the area theorem [7, Theorem 11, p. 193] that

∞
∑

n=2

(n − 1)|bn|2 ≤ 1. (1.2)

Obradović and Ponnusamy [19] showed that every f ∈ A of the form (1.1) belongs
to the class U whenever

∑∞
n=2(n − 1)|bn| ≤ 1. They [20] also showed that f (z) =

z + ∑∞
n=2 anz

n ∈ A satisfying
∑∞

n=2 n|an| ≤ 1 belongs to U ∩ S∗. On the other
hand, it was shown in [2] that functions f ∈ U of the form (1.1) necessarily satisfy
∑∞

n=2(n − 1)2|bn|2 ≤ 1.
In [2], Ali et al. showed that the condition (1.2) does not ensure univalence, and they

obtained the sharp radius of univalence r0 = 1/
√
2 for the class of functions f ∈ A

satisfying (1.2). In [16], the U-radius for S was determined to be 1/
√
2. Evidently,

radius problems have continued to be an important area of study.
In general, for two families G and F ofA, the G-radius for the class F , denoted by

RG(F), is the largest number R such that r−1 f (r z) ∈ G for 0 < r ≤ R, and f ∈ F .
In [12,13], MacGregor obtained the radius of starlikeness for the class of functions

f ∈ A satisfying either

Re

(
f (z)

g(z)

)

> 0 (z ∈ D) or

∣
∣
∣
∣

f (z)

g(z)
− 1

∣
∣
∣
∣
< 1 (z ∈ D) (1.3)

for some g ∈ C. Ratti [27] determined its radius of starlikeness for the class (1.3)
when g belongs to certain classes of analytic functions. MacGregor in [11] also found
the radius of convexity for univalent functions satisfying | f ′(z) − 1| < 1.

This paper finds the U-radius for three classes of functions:
(a) first is the class of functions f ∈ A satisfying the inequality

Re

(
f (z)

g(z)

)

> 0, z ∈ D, (1.4)

for some g ∈ A with

Re

(
g(z)

z

)

> 0, z ∈ D;

(b) secondly the class of functions f ∈ A satisfying the inequality

Re

(
f (z)

g(z)

)

> 0, z ∈ D, (1.5)
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1708 R. M. Ali, N. M. Alarifi

for some g ∈ A with

Re

(
g(z)

z

)

>
1

2
, z ∈ D;

(c) and the class of functions f ∈ A satisfying the inequality

∣
∣
∣
∣

f (z)

g(z)
− 1

∣
∣
∣
∣
< 1, z ∈ D,

for some g ∈ A with

Re

(
g(z)

z

)

> 0, z ∈ D.

Additionally, this paper also finds the radius r0 so that

∣
∣U f (z)

∣
∣ =

∣
∣
∣
∣
∣

(
z

f (z)

)2

f ′(z) − 1

∣
∣
∣
∣
∣
< 1

in the disk |z| < r0 for the following two classes of functions:

(a) the subclass of close-to-convex functions f ∈ A satisfying

∣
∣ f ′(z) − 1

∣
∣ < 1, z ∈ D; (1.6)

(b) and the class of functions f ∈ A satisfying the inequality

Re
f (z)

z
> α, 0 ≤ α < 1, z ∈ D. (1.7)

It is known that every convex function in C belongs to the class (1.7) for α = 1/2.
Indeed, this class also contains f ∈ U satisfying f ′′(0) = 0.

Ratti [27] showed that the radius of starlikeness for the class (1.4) is
√
5 − 2,

and that the radius can be improved to 1/3 for the class given by (1.5). The radius
of convexity for the class given by (1.6) was obtained by MacGregor [11]. Several
radius constants, which include the radius of starlikeness of a positive order, radius
of parabolic starlikeness, radius of Bernoulli lemniscate starlikeness, and radius of
uniform convexity, have been obtained for the classes (1.4) and (1.5) by Ali et al. in
[3].

Obradović and Ponnusamy in [21] also considered the product of functions F(z) =
f (z)g(z)/z when f and g belong to certain subsets of S. They showed that whenever
f, g ∈ S∗, then the product F is starlike in the disk |z| < 1/3. Additionally, F
belongs to U in the disk |z| < r0, where r0 ≈ 0.30294, whenever f, g ∈ S. In [22],
they improved the value of r0 to r0 ≈ 0.3263, where r0 is the positive root of a certain
equation. When f, g ∈ S, they [21] conjectured that F is also univalent in the disk
|z| < 1/3, and that the radius 1/3 is best. In Sect. 3, we show in the affirmative this
conjecture. Indeed, the radius of starlikeness for such functions F is shown to be 1/3.
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The U -Radius for Classes of Analytic Functions 1709

The following lemmas are needed in the sequel. Recall that an analytic function f
is subordinate to an analytic function g, written f (z) ≺ g(z), if there exists an analytic
self-map w of D with w(0) = 0 satisfying f (z) = g

(

w(z)
)

.

Lemma 1.1 [9] Let p(z) = 1 + p1z + · · · be analytic in D, and h be convex. If

p(z) + 1

γ
zp′(z) ≺ h(z), (1.8)

where γ 
= 0 and Re γ ≥ 0, then

p(z) ≺ γ

zγ

z∫

0

h(t)tγ−1dt.

Lemma 1.2 [18] Let f be analytic in D and have the form

z

f (z)
= 1 + b1z + b2z

2 + · · · ,

with bn ≥ 0 for all n ≥ 2. Then the following are equivalent:

(a) f ∈ S,

(b) f (z) f ′(z)
z 
= 0, z ∈ D,

(c)
∑∞

n=2(n − 1)bn ≤ 1,

(d) f ∈ U .

2 The U -Radius for Classes of Analytic Functions

Theorem 2.1 The U-radius for the class of functions f ∈ A satisfying the inequality

Re

(
f (z)

g(z)

)

> 0, z ∈ D,

for some g ∈ A with

Re

(
g(z)

z

)

> 0, z ∈ D,

is rU = √
5 − 2 ≈ 0.23607.

Proof Writing p(z) = g(z)/z and h(z) = f (z)/g(z), it follows that p, h ∈ P and
f (z) = zp(z)h(z). A brief computation shows that
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1710 R. M. Ali, N. M. Alarifi

U f (z) = z2
f ′(z)
f 2(z)

− 1

= 1

h(z)

(
1

p(z)
− z

(
1

p(z)

)′
− 1

)

+ 1

p(z)

(
1

h(z)
− z

(
1

h(z)

)′
− 1

)

−
(

1

p(z)
− 1

) (
1

h(z)
− 1

)

.

Thus

|U f (z)| ≤
∣
∣
∣
∣

1

h(z)

∣
∣
∣
∣

∣
∣
∣
∣

1

p(z)
− z

(
1

p(z)

)′
− 1

∣
∣
∣
∣
+

∣
∣
∣
∣

1

p(z)

∣
∣
∣
∣

∣
∣
∣
∣

1

h(z)
− z

(
1

h(z)

)′
− 1

∣
∣
∣
∣

+
∣
∣
∣
∣

1

h(z)
− 1

∣
∣
∣
∣

∣
∣
∣
∣

1

p(z)
− 1

∣
∣
∣
∣
. (2.1)

Since 1/p(z) = 1 + ∑∞
n=1 bnz

n and 1/h(z) = 1 + ∑∞
n=1 cnz

n are in the class P,

then |bn| ≤ 2 and |cn| ≤ 2 for n ≥ 1. Thus for |z| = r ,

∣
∣
∣
∣

1

p(z)
− 1

∣
∣
∣
∣
≤

∞
∑

n=1

|bn||z|n ≤ 2
∞
∑

n=1

rn = 2r

1 − r
, (2.2)

and

∣
∣
∣
∣

1

p(z)
− z

(
1

p(z)

)′
− 1

∣
∣
∣
∣
≤

∞
∑

n=2

(n − 1)|bn||z|n ≤ 2
∞
∑

n=2

(n − 1)rn = 2r2

(1 − r)2
.

(2.3)

Similar estimates are obtained for the function 1/h.
From (2.1), it follows that

|U f (z)| ≤ 2

(
1 + r

1 − r

2r2

(1 − r)2

)

+ 4r2

(1 − r)2
= 8r2

(1 − r)3
.

Hence |U f (z)| < 1 if |z| <
√
5 − 2, where rU = √

5 − 2 is the root of the equation
(r + 1)(r2 + 4r − 1) = 0.

To demonstrate sharpness, let f0(z) = z
(

(1 − z)/(1 + z)
)2

, and g0(z) = z(1 −
z)/(1 + z). Evidently

|U f0(r)| =
∣
∣
∣
∣
∣

(
r

f0(r)

)2

f0
′(r) − 1

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

(
(1 + r)2

(1 − r)2

)2 (
(1 − r)2

(1 + r)2
− 4r(1 − r)

(1 + r)3

)

− 1

∣
∣
∣
∣
∣
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The U -Radius for Classes of Analytic Functions 1711

=
∣
∣
∣
∣

(1 + r)2(1 − r) − 4r(1 + r)

(1 − r)3
− 1

∣
∣
∣
∣

= 8r2

(1 − r)3
.

Since r2/(1 − r)3 is increasing, it follows that |U f0(r)| > 1 for
√
5 − 2 < r < 1. ��

Theorem 2.2 The U-radius for the class of functions f ∈ A satisfying the inequality

Re

(
f (z)

g(z)

)

> 0, z ∈ D,

for some g ∈ A with

Re

(
g(z)

z

)

>
1

2
, z ∈ D,

is rU = 1/3.

Proof Let p(z) = g(z)/z, h(z) = f (z)/g(z), and f (z) = zp(z)h(z). Since p ∈
P(1/2), it follows that p(z) ≺ 1/(1 + z), and thus p(z) = 1/

(

1 + zϕ(z)
)

, where
|ϕ(z)| ≤ 1. For |z| = r, and |ϕ(z)| = x, 0 ≤ x ≤ 1, evidently

∣
∣
∣
∣

1

p(z)
− 1

∣
∣
∣
∣
= |z||ϕ(z)| = r x,

and the Schwarz–Pick inequality [4, p. 198] gives

∣
∣
∣
∣

1

p(z)
− z

(
1

p(z)

)′
− 1

∣
∣
∣
∣
= |z|2|ϕ′(z)| ≤ |z|2(1 − |ϕ(z)|2)

1 − |z|2 = r2(1 − x2)

1 − r2
.

The function h ∈ P satisfies the estimates (2.2) and (2.3). It follows from (2.1) that

|U f (z)| ≤ 1 + r

1 − r

r2(1 − x2)

1 − r2
+ 2r2(1 + r x)

(1 − r)2
+ 2r2x

1 − r
= r2(3 + 2x − x2)

(1 − r)2
.

Since λ(x) = 3 + 2x − x2 is increasing over 0 ≤ x ≤ 1, evidently

|U f (z)| ≤ 4r2

(1 − r)2
< 1

if r < rU , where rU = 1/3 is the root of the equation 3r2 + 2r − 1 = 0.
For sharpness, consider f0(z) = z(1 − z)/(1 + z)2, and g0(z) = z/(1 + z). Thus

z

f0(z)
= (1 + z)2

1 − z
= 1 + 3z + 4

∞
∑

n=2

zn .
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1712 R. M. Ali, N. M. Alarifi

It follows from Lemma 1.2 that r−1 f0(r z) ∈ U provided 0 < r ≤ 1 satisfies

4
∞
∑

n=2

(n − 1)rn = 4r
∞
∑

n=1

nrn =
(

2r

1 − r

)2

≤ 1,

that is, if r ≤ rU , where rU = 1/3 is the root of the equation 3r2 + 2r − 1 = 0. ��

Theorem 2.3 The U-radius for the class of functions f ∈ A satisfying the inequality

∣
∣
∣
∣

f (z)

g(z)
− 1

∣
∣
∣
∣
< 1, z ∈ D,

for some g ∈ A with

Re

(
g(z)

z

)

> 0, z ∈ D,

is rU = (√
17 − 3

)

/4 ≈ 0.28078.

Proof Let p(z) = g(z)/z, h(z) = f (z)/g(z), and f (z) = zp(z)h(z). Then 1/h(z) =
1 + ∑∞

n=1 cnz
n is in P(1/2), and thus |cn| ≤ 1 for n ≥ 1. For |z| = r ,

∣
∣
∣
∣

1

h(z)
− 1

∣
∣
∣
∣
≤

∞
∑

n=1

|cn||z|n ≤
∞
∑

n=1

rn = r

1 − r
,

and

∣
∣
∣
∣

1

h(z)
− z

(
1

h(z)

)′
− 1

∣
∣
∣
∣
≤

∞
∑

n=1

(n − 1)|cn||z|n ≤
∞
∑

n=1

(n − 1)rn = r2

(1 − r)2
.

Further the function p satisfies the estimates (2.2) and (2.3). It follows from (2.1)
that

|U f (z)| ≤ 1

1 − r

2r2

(1 − r)2
+ 1 + r

1 − r

r2

(1 − r)2
+ r

1 − r

2r

1 − r
= 5r2 − r3

(1 − r)3
.

Hence |U f (z)| < 1 if r < rU , where rU = (√
17 − 3

)

/4 is the root of the equation
2r2 + 3r − 1 = 0.

To demonstrate sharpness, let f0(z) = z(1−z)2/(1+z), and g0(z) = z(1−z)/(1+
z). Thus

z

f0(z)
= 1 + z

(1 − z)2
= 1 +

∞
∑

n=1

(2n + 1)zn .
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The U -Radius for Classes of Analytic Functions 1713

Lemma 1.2 will be used to show r−1 f0(r z) ∈ U . For 0 < r ≤ 1,

r z

f0(r z)
= 1 +

∞
∑

n=1

(2n + 1)rnzn,

and

∞
∑

n=2

(n − 1)(2n + 1)rn = 2r2
∞
∑

n=0

(n + 2)(n + 1)rn + r2
∞
∑

n=0

(n + 1)rn

= 4r2

(1 − r)3
+ r2

(1 − r)2
= 5r2 − r3

(1 − r)3
≤ 1

if and only if r ≤ (√
17− 3

)

/4, where rU = (√
17− 3

)

/4 is the root of the equation
2r2 + 3r − 1 = 0. ��
Theorem 2.4 Let f ∈ A satisfy

| f ′(z) − 1| < 1, z ∈ D.

Then
∣
∣U f (z)

∣
∣ =

∣
∣
∣
∣
∣

(
z

f (z)

)2

f ′(z) − 1

∣
∣
∣
∣
∣
< 1

in the disk |z| < r0, where r0 =
√

(
√
5 − 1)/2 ≈ 0.78615.

Proof Evidently the subordination (1.8) translates to f ′(z) ≺ 1 + z by choosing
γ = 1, p(z) = f (z)/z, and h(z) = 1 + z. It follows that

f (z)

z
≺ 1 + z

2
.

Thus there exists an analytic self-mapw ofDwithw(0) = 0 and f (z)/z = 1+w(z)/2.
Simple computations lead to

|U f (z)| =
∣
∣
∣
∣
∣
∣

(

1

1 + w(z)
2

)2 (

1 + w(z)

2
+ zw′(z)

2

)

− 1

∣
∣
∣
∣
∣
∣

=
∣
∣2

(

zw′(z) − w(z)
) − w2(z)

∣
∣

4
∣
∣
∣1 + w(z)

2

∣
∣
∣

2 .

Thus

|U f (z)| ≤ 2
∣
∣zw′(z) − w(z)

∣
∣ + |w2(z)|

4
(

1 − |w(z)|
2

)2 . (2.4)
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1714 R. M. Ali, N. M. Alarifi

The Schwarz–Pick inequality [4, p. 198] applied to w(z)/z yields

|zw′(z) − w(z)| ≤ |z|2 − |w(z)|2
1 − |z|2 . (2.5)

Substituting (2.5) into (2.4), and writing |w(z)| = t, |z| = r, 0 ≤ t ≤ r , leads to

|U f (z)| ≤ 1
(

1 − r2
)

(

− (

1 + r2
)

t2 + 2r2

(2 − t)2

)

:= 1

1 − r2
Φ(t, r).

Since

∂Φ(t, r)

∂t
= 4

(

r2 − (1 + r2)t
)

(2 − t)3
,

the function Φ(t, r) attains its maximum at the point t0 = r2/(1 + r2), that is,

Φ(t, r) ≤ r2
(

r2 + 1
)

(

r2 + 2
) .

Thus |U f (z)| < 1 if |z| < r0, where r0 =
√

(
√
5 − 1)/2 is the root of the equation

r4 + r2 − 1 = 0. ��
Remark 2.1 Ozaki [23] introduced the classG consistingof functions f ∈ A satisfying

Re

(

1 + z f ′′(z)
f ′(z)

)

<
3

2
,

and proved that these functions are necessarily univalent in D. Umezawa [30]
showed that these functions are convex in one direction. Sakaguchi [28] proved that
| arg f ′(z)| < π/2 whenever f ∈ G, and indeed, G ⊂ S∗, see [10,29]. There has been
a continued interest in recent years over the class G, see for example, the works in
[24,26]. It follows from [10, Theorem 2] that | f ′(z) − 1| < 1 whenever f ∈ G. Thus

Theorem 2.4 shows that
∣
∣U f (z)

∣
∣ < 1 for f ∈ G, and |z| <

√

(
√
5 − 1)/2.

Theorem 2.5 Let f ∈ A satisfy

Re
f (z)

z
> α, 0 ≤ α < 1, z ∈ D.

Then
∣
∣U f (z)

∣
∣ =

∣
∣
∣
∣
∣

(
z

f (z)

)2

f ′(z) − 1

∣
∣
∣
∣
∣
< 1
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in the disk |z| < r(α), where

r(α) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

√
2(1−α)
1−2α − 1, 0 ≤ α ≤ 1

10 ,
√√

α(1−α)−α
1−2α , 1

10 ≤ α ≤ 1
2 ,

√√
2−4α(1−α)−2(1−α)

2(2α−1) , 1
2 ≤ α ≤ τα,

1
4α−3

(

1 −
√

2(1−α)
2α−1

)

, τα ≤ α < 1,

and τα =
(

8− 11/
3
√

71 + 6
√
177+ 3

√

71 + 6
√
177

)

/12 ≈ 0.93804 is the root of the

equation

4α −
(

(2α − 1) + √

(2α − 1)(10α − 9)
) (

(2a − 1) + √

2(1 − α)(2α − 1)
)

= 2

(2.6)

in the interval [9/10, 1). The result is sharp for the case α ∈ [0, 1/10].
Proof It follows that

f (z)

z
≺ α + (1 − α)

1 + z

1 − z
.

Thus there exists an analytic self-map w of D satisfying w(0) = 0 and

f (z) = z

(
1 + (1 − 2α)w(z)

1 − w(z)

)

.

Now

U f (z) = 2(1 − α)
((

zw′(z) − w(z)
) − (1 − 2α)w2(z)

)

(1 + (1 − 2α)w(z))2
,

and

|U f (z)| ≤ 2(1 − α)
(∣
∣zw′(z) − w(z)

∣
∣ + |1 − 2α||w(z)|2)

(1 − |1 − 2α||w(z)|)2 .

Writing |w(z)| = t, |z| = r, 0 ≤ t ≤ r , and |1−2α| = a, it follows from (2.5) that

|U f (z)| ≤ 2(1 − α)
(

r2 + (

a(1 − r2) − 1
)

t2
)

(1 − at)2(1 − r2)

:= Φ(t, r).
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Evidently

∂Φ(t, r)

∂t
= 4(1 − α)

(

ar2 − (

1 − a(1 − r2)
)

t
)

(1 − r2)(1 − at)3
:= 4(1 − α)

(1 − r2)(1 − at)3
ϕ(t, r),

where

ϕ(t, r) = ar2 −
(

1 − a(1 − r2)
)

t.

Thus the critical points of Φ(t, r) over t ∈ [0, r ] occurs at t = 0, t = r and possibly
at t0 = ar2/(1 − a + ar2), where ϕ(t0, r) = 0. Indeed t0 is a critical point in [0, r ]
whenever

g(r) = ar2 − ar + 1 − a (2.7)

is nonnegative.
For a ∈ [0, 4/5], it is evident that g(r) ≥ 0 in (0, 1). Hence the maximum value of

Φ(t, r) is the largest value of {Φ(0, r);Φ(t0, r);Φ(r, r)}. Since

Φ(t0, r) − Φ(0, r) = 2(1 − α)(1 − a + ar2)r2

(1 − a)(1 − r2)(1 + ar2)
− 2(1 − α)r2

(1 − r2)

= 2a2(1 − α)r4

(1 − a)(1 − r2)(1 + ar2)
≥ 0,

and

Φ(t0, r) − Φ(r, r) = 2(1 − α)(1 − a + ar2)r2

(1 − a)(1 − r2)(1 + ar2)
− 2(1 − α)ar2

(1 − ar)2

= 2r2(1 − α)
(

(1 − a) − ar(1 − r)
)2

(1 − a)(1 − r2)(1 + ar2)(1 − ar)2
≥ 0,

it is evident that max Φ(t, r) = Φ(t0, r). Thus

|U f (z)| ≤ Φ(t0, r) = 2(1 − α)(1 − a + ar2)r2

(1 − a)(1 − r2)(1 + ar2)
< 1

provided |z| < r(α), where r(α) is the root of the equation

a
(

3 − 2α − a
)

r4 + (1 − a)
(

3 − 2α − a
)

r2 − (1 − a) = 0.

Hence

r2(α)=
√

(1 − a)2
(

3 − 2α − a
)2 + 4a(1 − a)

(

3 − 2α − a
) − (1 − a)

(

3 − 2α − a
)

2a
(

3 − 2α − a
) .
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Since a = |1 − 2α|, further simplification leads to

r(α) =
⎧

⎨

⎩

√√
α(1−α)−α
1−2α , 1

10 ≤ α ≤ 1
2

√√
2−4α(1−α)−2(1−α)

2(2α−1) , 1
2 ≤ α ≤ 9

10 .

For a ∈ [4/5, 1], the roots of g in (2.7) occurs at

r1 = a − √
a(5a − 4)

2a
, r2 = a + √

a(5a − 4)

2a
. (2.8)

Evidently g(r) ≥ 0 over the intervals [0, r1] and [r2, 1), and so the maximum of
Φ(t, r) occurs at Φ(t0, r). On the other hand, g(r) < 0 over (r1, r2). Since t0 is not a
critical point, the maximum of Φ(t, r) occurs at either Φ(0, r) or Φ(r, r).

Consider

K (r) = Φ(0, r) − Φ(r, r) = 2(1 − α)r2

(1 − r2)
− 2(1 − α)ar2

(1 − ar)2

= 2r2(1 − α)
(

a(1 + a)r2 − 2ar + 1 − a
)

(1 − r2)(1 − ar)2

:= 2r2(1 − α)

(1 − r2)(1 − ar)2
k(r),

where

k(r) = a(1 + a)r2 − 2ar + 1 − a, a ∈ [4/5, 1].

The roots of k are

r ′
1 = a − √

a3 + a(a − 1)

a(1 + a)
, r ′

2 = a + √

a3 + a(a − 1)

a(1 + a)
.

Observe that K (r) ≤ 0 over (r ′
1, r

′
2), and that (r1, r2) ⊆ (r ′

1, r
′
2), where r1, r2 are

given by (2.8). Thus K (r) ≤ 0 over (r1, r2), and the maximum value of Φ(t, r) is
Φ(r, r).

There are two cases to consider for a = |1 − 2α| ∈ [4/5, 1], that is, α ∈ [0, 1/10]
and α ∈ [9/10, 1). Consider first when α ∈ [0, 1/10].

If r ∈ [0, r1], then g given by (2.7) satisfies g(r) ≥ 0. Thus

|U f (z)| ≤ Φ(t0, r) < 1

for all |z| < R1(α), where

R1(α) =
√√

α(1 − α) − α

1 − 2α
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is the root of the equation Φ(t0, r) = 1. Since R1(α) ≥ r1, it follows that

|U f (z)| < 1

whenever |z| < r1.
When r ∈ (r1, r2), then g(r) < 0 and

|U f (z)| ≤ Φ(r, r) < 1

for all |z| < R2(α), where

R2(α) =
√

2(1 − α)

1 − 2α
− 1

is the root of the equation Φ(r, r) = 1. Since r1 < R2(α) < r2, we deduce that
|U f (z)| < 1 for all |z| < R2(α) when α ∈ [0, 1/10].

Consider next the other case when α ∈ [9/10, 1). Likewise as in the first case, if
r ∈ [0, r1], then g(r) ≥ 0 and

|U f (z)| ≤ Φ(t0, r) < 1

for all |z| < R′
1(α), where

R′
1(α) =

√√
2 − 4α(1 − α) − 2(1 − α)

2(2α − 1)
(2.9)

is the root of the equation Φ(t0, r) = 1. Since R′
1(α) ≥ r1, then

|U f (z)| < 1

whenever |z| < r1.
If r ∈ (r1, r2), then g(r) < 0 and

|U f (z)| ≤ Φ(r, r) < 1

for all |z| < R′
2(α), where

R′
2(α) = 1

4α − 3

(

1 −
√

2(1 − α)

2α − 1

)

is the root of the equation Φ(r, r) = 1.
A closer scrutiny of R′

2(α) reveals that r1 < R′
2(α) < r2 whenever α ∈ [τα, 1),

where τα is given by (2.6). Thus in this case, |U f (z)| < 1 for |z| < R′
2(α).
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On the other hand, R′
2(α) ≥ r2 whenever α ∈ [9/10, τα]. Thus if r ∈ [r2, 1), then

g(r) ≥ 0 and

|U f (z)| ≤ Φ(t0, r) < 1

for all |z| < R′
1(α), where R′

1(α) is given by (2.9). Since r2 ≤ R′
1(α) < 1, it follows

that |U f (z)| < 1 for |z| < R′
1(α) when α ∈ [9/10, τα].

For α ∈ [0, 1/10], an extremal function is f0(z) = z
(

1 − (1 − 2α)z
)

/(1 + z). In
this case,

z

f0(z)
= (1 + z)

1 − (1 − 2α)z

= 1 + 2(1 − α)

∞
∑

n=1

(1 − 2α)n−1zn .

Thus

Rz

f0(Rz)
= 1 + 2(1 − α)

∞
∑

n=1

(1 − 2α)n−1Rnzn

= 1 +
∞
∑

n=1

bnz
n .

for 0 < R ≤ 1. Evidently

∞
∑

n=2

(n − 1)bn = 2(1 − α)(1 − 2α)R2
∞
∑

n=2

(n − 1)
(

(1 − 2α)R
)n−2

= 2(1 − α)(1 − 2α)R2

(

1 − (1 − 2α)R
)2 ≤ 1

if and only if R ≤ R(α), where R(α) = √
2(1 − α)/(1 − 2α) − 1 is the root of the

equation

(1 − 2α)R2 + 2(1 − 2α)R − 1 = 0.

It follows from Lemma 1.2 that R−1 f0(Rz) ∈ U if R ≤ √
2(1 − α)/(1 − 2α) − 1. ��

3 Product of Univalent Functions

LetF1 andF2 be subsets ofS. In [21],Obradović andPonnusamyconsidered functions

F(z) = f (z)g(z)

z
, z ∈ D, (3.1)
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1720 R. M. Ali, N. M. Alarifi

where f ∈ F1 and g ∈ F2. If f and g are in U , they showed that F defined by (3.1)
belongs to U in the disk |z| < 1/3, and that this radius is sharp. Indeed if f, g ∈ S∗,
then the product F is starlike in the disk |z| < 1/3. When f, g ∈ S, they conjectured
that F is univalent in the disk |z| < 1/3, and that this radius is best. Here we shall
validate the conjecture.

Lemma 3.1 If f ∈ S, then

Re

(
z f ′(z)
f (z)

)

>
1 − r

1 + r
,

for |z| = r < tanh(1/2) ≈ 0.46212.

Proof Let f ∈ S. It is known [8] that for |z| ≤ r < 1, the region of values of
ζ = log(z f ′(z)/ f (z)) is the disk

Dr =
{

ζ : |ζ | ≤ log
1 + r

1 − r

}

.

The function w(z) = ez is univalent in D. Thus if r is chosen so that
log

(

(1 + r)/(1 − r)
)

< 1, that is, r < tanh(1/2), then w is univalent in Dr . Evi-
dently the function q(z) = w(z) − 1 is convex in D, that is, w is a convex function
with positive coefficients in its series expansion. Thus

inf
ζ∈Dr

Re w(ζ ) = inf
0≤θ≤2π

Re exp

(

log
(1 + r

1 − r

)

cos θ

)

= exp

(

−
(

log
1 + r

1 − r

))

= 1 − r

1 + r

for |z| = r < tanh(1/2). ��

Theorem 3.1 If f, g ∈ S, then the function F defined by (3.1) is starlike in the disk
|z| < 1/3. The radius 1/3 is sharp.

Proof It follows from (3.1) that

Re

(
zF ′(z)
F(z)

)

= Re

(
z f ′(z)
f (z)

)

+ Re

(
zg′(z)
g(z)

)

− 1.

Lemma 3.1 now shows that F is starlike when |z| < 1/3. Sharpness is demonstrated
by letting f (z) = z/(1 − z)2 = g(z). ��
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22. Obradović, M., Ponnusamy, S.: Criteria for univalent functions in the unit disk. Arch. Math. (Basel)

100(2), 149–157 (2013)
23. Ozaki, S.: On the theory of multivalent functions II. Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4,

45–87 (1941)
24. Ponnusamy, S., Rajasekaran, S.: New sufficient conditions for starlike and univalent functions. Soo-

chow J. Math. 21(2), 193–201 (1995)
25. Ponnusamy, S., Sahoo, P.: Special classes of univalent functions with missing coefficients and integral

transforms. Bull. Malays. Math. Sci. Soc. (2) 28(2), 141–156 (2005)
26. Ponnusamy, S., Vasudevarao, A.: Region of variability of two subclasses of univalent functions. J.

Math. Anal. Appl. 332(2), 1323–1334 (2007)
27. Ratti, J.S.: The radius of univalence of certain analytic functions. Math. Z. 107, 241–248 (1968)
28. Sakaguchi, K.: A property of convex functions and an application to criteria for univalence. Bull. Nara

Univ. Educ. Nat. Sci. 22(2), 1–5 (1973)
29. Singh, R., Singh, S.: Some sufficient conditions for univalence and starlikeness. Colloq. Math. 47(2),

309–314 (1983)
30. Umezawa, T.: Analytic functions convex in one direction. J. Math. Soc. Jpn. 4, 194–202 (1952)

123


	The mathcalU-Radius for Classes of Analytic Functions
	Abstract
	1 Introduction
	2 The mathcalU-Radius for Classes of Analytic Functions
	3 Product of Univalent Functions
	Acknowledgments
	References




